Shayesteh, H., Rahbar-Kelishami, A. & Norouzbeigi, R. Superhydrophobic/superoleophilic micro/nanostructure nickel particles for oil/water combination and emulsion separation. Ceram. Int. 48, 10999–11008 (2022).
Gupta, S., He, W.-D. & Tai, N.-H. A comparative examine on superhydrophobic sponges and their utility as fluid channel for steady separation of oils and natural solvents from water. Compos. B Eng. 101, 99–106. https://doi.org/10.1016/j.compositesb.2016.06.002 (2016).
Peterson, C. H. et al. Lengthy-term ecosystem response to the exxon valdez oil spill. Science 302, 2082–2086. https://doi.org/10.1126/science.1084282 (2003).
Kujawinski, E. B. et al. Destiny of dispersants related to the deepwater horizon oil spill. Environ. Sci. Technol. 45, 1298–1306. https://doi.org/10.1021/es103838p (2011).
Li, Z. et al. Photocatalytically pushed self-cleaning and underwater superoleophobic copper mesh modified with hierarchical Bi2WO6@CuO nanowires for oil/water separation. Ind. Eng. Chem. Res. 59, 16450–16461. https://doi.org/10.1021/acs.iecr.0c03101 (2020).
Shayesteh, H., Norouzbeigi, R. & Rahbar-Kelishami, A. Analysis of superhydrophobicity of chemical-resistant magnetic spiky nickel nanowires grafted with silane coupling agent for extremely environment friendly oil/water separation. Surf. Interfaces 28, 101685 (2022).
Zhang, W., Lu, X., Xin, Z. & Zhou, C. A self-cleaning polybenzoxazine/TiO2 floor with superhydrophobicity and superoleophilicity for oil/water separation. Nanoscale 7, 19476–19483. https://doi.org/10.1039/c5nr06425b (2015).
Zhao, Y. et al. A flexible, ultralight, nitrogen-doped graphene framework. Angew. Chem. Int. Ed. 51, 11371–11375. https://doi.org/10.1002/anie.201206554 (2012).
Hayase, G., Kanamori, Ok., Fukuchi, M., Kaji, H. & Nakanishi, Ok. Facile synthesis of marshmallow-like macroporous gels usable underneath harsh situations for the separation of oil and water. Angew. Chem. Int. Ed. 52, 1986–1989. https://doi.org/10.1002/anie.201207969 (2013).
Aurell, J. & Gullett, B. Ok. Aerostat sampling of PCDD/PCDF emissions from the Gulf oil spill in situ burns. Environ. Sci. Technol. 44, 9431–9437. https://doi.org/10.1021/es103554y (2010).
Farinmade, A. et al. Focused and stimulus-responsive supply of surfactant to the oil-water interface for purposes in oil spill remediation. ACS Appl. Mater. Interfaces. 12, 1840–1849. https://doi.org/10.1021/acsami.9b17254 (2020).
Rabbani, Y., Shariaty-Niassar, M. & Ebrahimi, S. A. S. The impact of superhydrophobicity of prickly form carbonyl iron particles on the oil-water adsorption. Ceram. Int. 47, 28400–28410. https://doi.org/10.1016/j.ceramint.2021.06.257 (2021).
Chan, Y. J., Chong, M. F., Legislation, C. L. & Hassell, D. G. A evaluation on anaerobic-aerobic remedy of commercial and municipal wastewater. Chem. Eng. J. 155, 1–18. https://doi.org/10.1016/j.cej.2009.06.041 (2009).
Wu, M., Xiang, B., Mu, P. & Li, J. Janus nanofibrous membrane with particular micro-nanostructure for extremely environment friendly separation of oil–water emulsion. Sep. Purif. Technol. 297, 121532 (2022).
Cao, W. et al. Multifunctional nanofibrous membranes with sunlight-driven self-cleaning efficiency for advanced oily wastewater remediation. J. Colloid Interface Sci. 608, 164–174 (2022).
Ma, W., Cao, W., Lu, T., Xiong, R. & Huang, C. Multifunctional nanofibrous membrane fabrication by a sacrifice template technique for environment friendly emulsion oily wastewater separation and water purification. J. Environ. Chem. Eng. 10, 108908 (2022).
Ma, W., Jiang, Z., Lu, T., Xiong, R. & Huang, C. Light-weight, elastic and superhydrophobic multifunctional nanofibrous aerogel for self-cleaning, oil/water separation and stress sensing. Chem. Eng. J. 430, 132989 (2022).
Rabbani, Y., Shariaty-Niassar, M. & Ebrahimi, S. A. S. The optimization impact of various parameters on the tremendous hydrophobicity of prickly-shaped carbonyl iron particles. RSC Adv. 12, 12760–12772 (2022).
Chen, P. C. & Xu, Z. Ok. Mineral-coated polymer membranes with superhydrophilicity and underwater superoleophobicity for efficient oil/water separation. Sci. Rep. https://doi.org/10.1038/srep02776 (2013).
Jin, M. et al. Underwater oil seize by a three-dimensional community architectured organosilane floor. Adv. Mater. 23, 2861–2864. https://doi.org/10.1002/adma.201101048 (2011).
Besharati Fard, M. et al. Saline oily wastewater remedy utilizing Lallemantia mucilage as a pure coagulant: Kinetic examine, course of optimization, and modeling. Ind. Crops Prod. https://doi.org/10.1016/j.indcrop.2021.113326 (2021).
Solar, Q., Xiang, B., Mu, P. & Li, J. Inexperienced preparation of a carboxymethyl cellulose-coated membrane for extremely environment friendly separation of crude oil-in-water emulsions. Langmuir 38, 7067–7076. https://doi.org/10.1021/acs.langmuir.2c00834 (2022).
Xiang, B., Solar, Q., Zhong, Q., Mu, P. & Li, J. Present analysis state of affairs and future prospect of superwetting sensible oil/water separation supplies. J. Mater. Chem. A 10, 20190–20217. https://doi.org/10.1039/D2TA04469B (2022).
Aisien, F. A., Hymore, F. Ok. & Ebewele, R. O. Potential utility of recycled rubber in oil air pollution management. Environ. Monit. Assess. 85, 175–190. https://doi.org/10.1023/A:1023690029575 (2003).
Liu, C. T., Su, P. Ok., Hu, C. C., Lai, J. Y. & Liu, Y. L. Floor modification of porous substrates for oil/water separation utilizing crosslinkable polybenzoxazine as an agent. J. Membr. Sci. 546, 100–109. https://doi.org/10.1016/j.memsci.2017.10.018 (2018).
Hariharan, A., Prabunathan, P., Subramanian, S. S., Kumaravel, M. & Alagar, M. Blends of Chalcone Benzoxazine and bio-benzoxazines coated cotton materials for oil-water separation and bio-silica strengthened nanocomposites for low-k purposes. J. Polym. Environ. 28, 598–613. https://doi.org/10.1007/s10924-019-01629-2 (2020).
Yao, H., Lu, X., Xin, Z., Zhang, H. & Li, X. A sturdy bio-based polybenzoxazine/SiO2 modified material with superhydrophobicity and superoleophilicity for oil/water separation. Sep. Purif. Technol. https://doi.org/10.1016/j.seppur.2019.115792 (2019).
Hu, W. et al. A mechanically strong and reversibly wettable benzoxazine/epoxy/mesoporous TiO2 coating for oil/water separation. Appl. Surf. Sci. https://doi.org/10.1016/j.apsusc.2019.145168 (2020).
Li, Z. & Guo, Z. Versatile 3D porous superhydrophobic composites for oil-water separation and natural solvent detection. Mater. Des. 196, 109144 (2020).
Rabbani, Y., Shayesteh, H., Haghshenas, N. & Safarzadeh Khosrowshahi, M. Investigation of grafting Silane coupling brokers on superhydrophobicity of carbonyl iron/SiO2 particles for environment friendly oil/water combination and emulsion separation. Sci. Rep. 13, 1–12 (2023).
Wang, C. F. & Lin, S. J. Sturdy Superhydrophobic/superoleophilic sponge for efficient steady absorption and expulsion of oil pollution from Water. ACS Appl. Mater. Interfaces 5, 8861–8864. https://doi.org/10.1021/am403266v (2013).
Zhang, L. et al. Thiolated graphene-based superhydrophobic sponges for oil-water separation. Chem. Eng. J. 316, 736–743. https://doi.org/10.1016/j.cej.2017.02.030 (2017).
Pham, V. H. & Dickerson, J. H. Superhydrophobic silanized melamine sponges as excessive effectivity oil absorbent supplies. ACS Appl. Mater. Interfaces 6, 14181–14188. https://doi.org/10.1021/am503503m (2014).
Shayesteh, H., Norouzbeigi, R. & Rahbar-Kelishami, A. Hydrothermal facile fabrication of superhydrophobic magnetic nanospiky nickel wires: Optimization through statistical design. Surf. Interfaces 26, 101315. https://doi.org/10.1016/j.surfin.2021.101315 (2021).
Li, Z.-T., Wu, H.-T., Chen, W.-Y., He, F.-A. & Li, D.-H. Preparation of magnetic superhydrophobic melamine sponges for efficient oil-water separation. Sep. Purif. Technol. 212, 40–50 (2019).
Peng, Y. et al. Bio-based polybenzoxazine modified melamine sponges for selective absorption of natural solvent in water. Adv. Maintain. Syst. 3, 1–10. https://doi.org/10.1002/adsu.201800126 (2019).
Liu, T. et al. The preparation of superhydrophobic graphene/melamine composite sponge utilized in remedy of oil air pollution. J. Porous Mater. 22, 1573–1580. https://doi.org/10.1007/s10934-015-0040-8 (2015).
Zhu, Y. et al. Sturdy superhydrophobic melamine sponge primarily based on polybenzoxazine and Fe3O4 for oil/water separation. Sep. Purif. Technol. 275, 119130 (2021).
Liu, L. et al. A facile technique to manufacture the superhydrophobic magnetic sponge for oil-water separation. Mater. Lett. 195, 66–70. https://doi.org/10.1016/j.matlet.2017.02.100 (2017).
Wang, J., Wang, H. & Geng, G. Extremely environment friendly oil-in-water emulsion and oil layer/water combination separation primarily based on durably superhydrophobic sponge ready through a facile route. Mar. Pollut. Bull. 127, 108–116. https://doi.org/10.1016/j.marpolbul.2017.11.060 (2018).
Lei, Z., Zhang, G., Deng, Y. & Wang, C. Thermoresponsive melamine sponges with switchable wettability by interface-initiated atom switch radical polymerization for oil/water separation. ACS Appl. Mater. Interfaces. 9, 8967–8974. https://doi.org/10.1021/acsami.6b14565 (2017).
Nazhipkyzy, M. et al. Efficient separation of petroleum oil-water mixtures through versatile and re-usable hydrophobic soot-coated melamine sponge. J. Water Course of Eng. 49, 103032 (2022).
Zhang, R. et al. Sturdy, fluorine-free and superhydrophobic composite melamine sponge modified with twin silanized SiO2 microspheres for oil–water separation. Chin. J. Chem. Eng. 33, 50–60 (2021).
Tan, J. & Zhang, Y.-F. Trisiloxane functionalized melamine sponges for oil water separation. Colloids Surf., A 634, 127972 (2022).
Arumugam, H., Ismail, A. A. M., Govindraj, L. & Muthukaruppan, A. Improvement of bio-based benzoxazines coated melamine foam for oil-water separation. Prog. Org. Coat. 153, 106128 (2021).
Yang, X. et al. Traits and aqueous dye elimination skill of novel biosorbents derived from acidic and alkaline one-step ball milling of hickory wooden. Chemosphere 309, 136610 (2022).
Yang, X. et al. Alkaline ball-milled peanut-hull biosorbent successfully removes aqueous natural dyes. Chemosphere 313, 137410 (2023).
Yang, X. et al. Elimination of aqueous Eriochrome blue-black R by novel Na-Bentonite/Hickory biochar composites. Sep. Purif. Technol. 311, 123209 (2023).
Yang, X. et al. Floor useful teams of carbon-based adsorbents and their roles within the elimination of heavy metals from aqueous options: a vital evaluation. Chem. Eng. J. 366, 608–621 (2019).
Yang, X. et al. Synthesis of hickory biochar through one-step acidic ball milling: Traits and titan yellow adsorption. J. Clear. Prod. 338, 130575 (2022).
Yang, X. et al. Preparation of biosorbent for the elimination of natural dyes from aqueous answer through one-step alkaline ball milling of hickory wooden. Biores. Technol. 348, 126831 (2022).
Khosrowshahi, M. S. et al. The function of floor chemistry on CO2 adsorption in biomass-derived porous carbons by experimental outcomes and molecular dynamics simulations. Sci. Rep. 12, 1–19 (2022).
Mashhadimoslem, H., Safarzadeh, M., Ghaemi, A., Emrooz, H. B. M. & Barzegar, M. Biomass derived hierarchical porous carbon for high-performance O2/N2 adsorption; a brand new inexperienced self-activation method. RSC Adv. 11, 36125–36142 (2021).
Singh, G. et al. Extremely environment friendly technique for the synthesis of activated mesoporous biocarbons with extraordinarily excessive floor space for high-pressure CO2 adsorption. ACS Appl. Mater. Interfaces 9, 29782–29793 (2017).
Salam, M. A., Makki, M. S. & Abdelaal, M. Y. Preparation and characterization of multi-walled carbon nanotubes/chitosan nanocomposite and its utility for the elimination of heavy metals from aqueous answer. J. Alloy. Compd. 509, 2582–2587 (2011).
Ramesh, S. et al. Ni (OH) 2-decorated nitrogen doped MWCNT nanosheets as an environment friendly electrode for prime efficiency supercapacitors. Sci. Rep. 9, 1–10 (2019).
Chen, J.-J. et al. A hierarchical structure S/MWCNT nanomicrosphere with massive pores for lithium sulfur batteries. Phys. Chem. Chem. Phys. 14, 5376–5382 (2012).
Pachfule, P., Biswal, B. P. & Banerjee, R. Management of porosity through the use of isoreticular zeolitic imidazolate frameworks (IRZIFs) as a template for porous carbon synthesis. Chem. A Eur. J. 18, 11399–11408 (2012).
Alemi, F. M., Dehghani, S. A. M., Rashidi, A., Hosseinpour, N. & Mohammadi, S. Synthesize of MWCNT-Fe2O3 nanocomposite for controlling formation and development of asphaltene particles in unstable crude oil. Colloids Surf., A 615, 126295 (2021).
Huang, W., Zhang, H., Huang, Y., Wang, W. & Wei, S. Hierarchical porous carbon obtained from animal bone and analysis in electrical double-layer capacitors. Carbon 49, 838–843 (2011).
Bakhtiari, S. S. E., Karbasi, S., Tabrizi, S. A. H. & Ebrahimi-Kahrizsangi, R. Chitosan/MWCNTs composite as bone substitute: Bodily, mechanical, bioactivity, and biodegradation analysis. Polym. Compos. 40, E1622–E1632 (2019).
Badihehaghdam, M., Mousavi Khoie, S. M., Khast, F. & Safarzadeh Khosrowshahi, M. Mechanical properties and electrochemical conduct of electroless Ni–P-AlN nanocomposite coating. Metals Mater. Int. 28, 1372–1385 (2022).
Moopri Singer Pandiyarajan, S. et al. Designing an interlayer-widened MoS2-packed nitrogen-rich carbon nanotube core-shell construction for redox-mediated quasi-solid-state supercapacitors. ACS Appl. Power Mater. 4, 2218–2230 (2021).
Huang, R. et al. Defects and sulfur-doping design of porous carbon spheres for high-capacity potassium-ion storage. Journal of Supplies Chemistry A 10, 682–689 (2022).
Wang, C. et al. Form-stabilized section change supplies primarily based on polyethylene glycol/porous carbon composite: The affect of the pore construction of the carbon supplies. Sol. Power Mater. Sol. Cells 105, 21–26 (2012).
Apriwandi, A., Taer, E., Farma, R., Setiadi, R. N. & Amiruddin, E. A facile method of micro-mesopores construction binder-free coin/monolith stable design activated carbon for electrode supercapacitor. J. Power Stor. 40, 102823 (2021).
Zhang, X. & Yang, P. Ni diffusion in vertical development of MoS2 nanosheets on carbon nanotubes in direction of extremely environment friendly hydrogen evolution. Carbon 175, 176–186 (2021).
Altalhi, A. A., Mohammed, E. A., Morsy, S. S. M., Negm, N. A. & Farag, A. A. Catalyzed manufacturing of various grade biofuels utilizing steel ions modified activated carbon of cellulosic wastes. Gas 295, 120646 (2021).
Prakash, M. O., Raghavendra, G., Ojha, S. & Panchal, M. Characterization of porous activated carbon ready from arhar stalks by single step chemical activation technique. Mater. At the moment: Proceed. 39, 1476–1481 (2021).
Mobin Safarzadeh Khosrowshahi, H. M., Hosein Banna Motejadded Emrooz, Ahad Ghaemi, Mahsa Sadat Hosseini. (2022) Inexperienced self-activating synthesis system for porous carbons: Celery biomass wastes as a typical case for CO2 uptake with kinetic, equilibrium and thermodynamic research. Diamond and Associated Supplies 127, 109204, doi:https://doi.org/10.1016/j.diamond.2022.109204
Avid, A. et al. Floor modification of MWCNT and its affect on properties of paraffin/MWCNT nanocomposites as section change materials. J. Appl. Polym. Sci. 137, 48428 (2020).
Vafaeinia, M., Khosrowshahi, M. S., Mashhadimoslem, H., Emrooz, H. B. M. & Ghaemi, A. Oxygen and nitrogen enriched pectin-derived micro-meso porous carbon for CO 2 uptake. RSC Adv. 12, 546–560 (2022).
Ma, H. et al. Elimination of chromium (VI) from water by porous carbon derived from corn straw: Influencing components, regeneration and mechanism. J. Hazard. Mater. 369, 550–560 (2019).
Peng, G., Xing, L., Barrio, J., Volokh, M. & Shalom, M. A common synthesis of porous carbon nitride movies with tunable floor space and photophysical properties. Angew. Chem. Int. Ed. 57, 1186–1192 (2018).
Bazargan, A. & McKay, G. A evaluation–synthesis of carbon nanotubes from plastic wastes. Chem. Eng. J. 195, 377–391 (2012).
Ma, Y. et al. Preparation of cauliflower formed hp-Co/GNs composite microwave absorbing supplies. Mater. Charact. 189, 111907 (2022).
Gupta, S. P. et al. Enhanced power density and stability of self-assembled cauliflower of Pd doped monoclinic WO3 nanostructure supercapacitor. Mater. Chem. Phys. 225, 192–199 (2019).
Liu, Z., Yang, T., Dong, Y. & Wang, X. A room temperature VOCs fuel sensor primarily based on a layer by layer multi-walled carbon nanotubes/poly-ethylene glycol composite. Sensors 18, 3113 (2018).
Mwafy, E. A. Eco-friendly method for the synthesis of MWCNTs from waste tires through chemical vapor deposition. Environ. Nanotechnol., Monit. Manag. 14, 100342 (2020).
Mohd Saidi, N. et al. Characterizations of MWCNTs nanofluids on the impact of floor oxidative remedies. Nanomaterials 12, 1071 (2022).
Habibi, N. & Pourjavadi, A. Magnetic, thermally secure, and superhydrophobic polyurethane sponge: A excessive environment friendly adsorbent for separation of the marine oil spill air pollution. Chemosphere 287, 132254 (2022).
Solar, H. et al. Lignin-based superhydrophobic melamine resin sponges and their utility in oil/water separation. Ind. Crops Prod. 170, 113798 (2021).
Mao, Y., Xia, W., Peng, Y. & Xie, G. Relationship mannequin between pore wetting and floatability of energetic carbon: Potential steering on porous mineral flotation. Miner. Eng. 157, 106556 (2020).
Ma, P.-C., Mo, S.-Y., Tang, B.-Z. & Kim, J.-Ok. Dispersion, interfacial interplay and re-agglomeration of functionalized carbon nanotubes in epoxy composites. Carbon 48, 1824–1834 (2010).
Mu, L., Yue, X., Hao, B., Wang, R. & Ma, P.-C. Facile preparation of melamine foam with superhydrophobic efficiency and its system integration with prototype tools for the clean-up of oil spills on water floor. Sci. Whole Environ. 833, 155184. https://doi.org/10.1016/j.scitotenv.2022.155184 (2022).
Wang, X., Han, Z., Liu, Y. & Wang, Q. Micro-nano floor construction development and hydrophobic modification to organize environment friendly oil-water separation melamine formaldehyde foam. Appl. Surf. Sci. 505, 144577. https://doi.org/10.1016/j.apsusc.2019.144577 (2020).
Lei, Z. et al. Ultralight, robustly compressible and super-hydrophobic biomass-decorated carbonaceous melamine sponge for oil/water separation with excessive oil retention. Appl. Surf. Sci. 489, 922–929. https://doi.org/10.1016/j.apsusc.2019.06.025 (2019).
Li, Y., Zhang, Z., Wang, M., Males, X. & Xue, Q. One-pot fabrication of nanoporous polymer embellished supplies: From oil-collecting gadgets to high-efficiency emulsion separation. J. Mater. Chem. A 5, 5077–5087. https://doi.org/10.1039/c7ta00297a (2017).
Ejeta, D. D. et al. Preparation of a main-chain-type polybenzoxazine-modified melamine sponge through non-solvent-induced section inversion for oil absorption and very-high-flux separation of water-in-oil emulsions. Sep. Purif. Technol. 263, 118387. https://doi.org/10.1016/j.seppur.2021.118387 (2021).
Tune, Q. et al. Interfacial meeting of micro/nanoscale nanotube/silica achieves superhydrophobic melamine sponge for water/oil separation. Sep. Purif. Technol. 280, 119920. https://doi.org/10.1016/j.seppur.2021.119920 (2022).
Xue, J. et al. Tetradecylamine-MXene functionalized melamine sponge for efficient oil/water separation and selective oil adsorption. Sep. Purif. Technol. 259, 118106. https://doi.org/10.1016/j.seppur.2020.118106 (2021).