Sturdy superhydrophobic/superoleophilic melamine foam primarily based on biomass-derived porous carbon and multi-walled carbon nanotube for oil/water separation


  • Shayesteh, H., Rahbar-Kelishami, A. & Norouzbeigi, R. Superhydrophobic/superoleophilic micro/nanostructure nickel particles for oil/water combination and emulsion separation. Ceram. Int. 48, 10999–11008 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Gupta, S., He, W.-D. & Tai, N.-H. A comparative examine on superhydrophobic sponges and their utility as fluid channel for steady separation of oils and natural solvents from water. Compos. B Eng. 101, 99–106. https://doi.org/10.1016/j.compositesb.2016.06.002 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Peterson, C. H. et al. Lengthy-term ecosystem response to the exxon valdez oil spill. Science 302, 2082–2086. https://doi.org/10.1126/science.1084282 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kujawinski, E. B. et al. Destiny of dispersants related to the deepwater horizon oil spill. Environ. Sci. Technol. 45, 1298–1306. https://doi.org/10.1021/es103838p (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Z. et al. Photocatalytically pushed self-cleaning and underwater superoleophobic copper mesh modified with hierarchical Bi2WO6@CuO nanowires for oil/water separation. Ind. Eng. Chem. Res. 59, 16450–16461. https://doi.org/10.1021/acs.iecr.0c03101 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Shayesteh, H., Norouzbeigi, R. & Rahbar-Kelishami, A. Analysis of superhydrophobicity of chemical-resistant magnetic spiky nickel nanowires grafted with silane coupling agent for extremely environment friendly oil/water separation. Surf. Interfaces 28, 101685 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, W., Lu, X., Xin, Z. & Zhou, C. A self-cleaning polybenzoxazine/TiO2 floor with superhydrophobicity and superoleophilicity for oil/water separation. Nanoscale 7, 19476–19483. https://doi.org/10.1039/c5nr06425b (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, Y. et al. A flexible, ultralight, nitrogen-doped graphene framework. Angew. Chem. Int. Ed. 51, 11371–11375. https://doi.org/10.1002/anie.201206554 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Hayase, G., Kanamori, Ok., Fukuchi, M., Kaji, H. & Nakanishi, Ok. Facile synthesis of marshmallow-like macroporous gels usable underneath harsh situations for the separation of oil and water. Angew. Chem. Int. Ed. 52, 1986–1989. https://doi.org/10.1002/anie.201207969 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Aurell, J. & Gullett, B. Ok. Aerostat sampling of PCDD/PCDF emissions from the Gulf oil spill in situ burns. Environ. Sci. Technol. 44, 9431–9437. https://doi.org/10.1021/es103554y (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Farinmade, A. et al. Focused and stimulus-responsive supply of surfactant to the oil-water interface for purposes in oil spill remediation. ACS Appl. Mater. Interfaces. 12, 1840–1849. https://doi.org/10.1021/acsami.9b17254 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rabbani, Y., Shariaty-Niassar, M. & Ebrahimi, S. A. S. The impact of superhydrophobicity of prickly form carbonyl iron particles on the oil-water adsorption. Ceram. Int. 47, 28400–28410. https://doi.org/10.1016/j.ceramint.2021.06.257 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Chan, Y. J., Chong, M. F., Legislation, C. L. & Hassell, D. G. A evaluation on anaerobic-aerobic remedy of commercial and municipal wastewater. Chem. Eng. J. 155, 1–18. https://doi.org/10.1016/j.cej.2009.06.041 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Wu, M., Xiang, B., Mu, P. & Li, J. Janus nanofibrous membrane with particular micro-nanostructure for extremely environment friendly separation of oil–water emulsion. Sep. Purif. Technol. 297, 121532 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Cao, W. et al. Multifunctional nanofibrous membranes with sunlight-driven self-cleaning efficiency for advanced oily wastewater remediation. J. Colloid Interface Sci. 608, 164–174 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, W., Cao, W., Lu, T., Xiong, R. & Huang, C. Multifunctional nanofibrous membrane fabrication by a sacrifice template technique for environment friendly emulsion oily wastewater separation and water purification. J. Environ. Chem. Eng. 10, 108908 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ma, W., Jiang, Z., Lu, T., Xiong, R. & Huang, C. Light-weight, elastic and superhydrophobic multifunctional nanofibrous aerogel for self-cleaning, oil/water separation and stress sensing. Chem. Eng. J. 430, 132989 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Rabbani, Y., Shariaty-Niassar, M. & Ebrahimi, S. A. S. The optimization impact of various parameters on the tremendous hydrophobicity of prickly-shaped carbonyl iron particles. RSC Adv. 12, 12760–12772 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, P. C. & Xu, Z. Ok. Mineral-coated polymer membranes with superhydrophilicity and underwater superoleophobicity for efficient oil/water separation. Sci. Rep. https://doi.org/10.1038/srep02776 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin, M. et al. Underwater oil seize by a three-dimensional community architectured organosilane floor. Adv. Mater. 23, 2861–2864. https://doi.org/10.1002/adma.201101048 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Besharati Fard, M. et al. Saline oily wastewater remedy utilizing Lallemantia mucilage as a pure coagulant: Kinetic examine, course of optimization, and modeling. Ind. Crops Prod. https://doi.org/10.1016/j.indcrop.2021.113326 (2021).

    Article 

    Google Scholar
     

  • Solar, Q., Xiang, B., Mu, P. & Li, J. Inexperienced preparation of a carboxymethyl cellulose-coated membrane for extremely environment friendly separation of crude oil-in-water emulsions. Langmuir 38, 7067–7076. https://doi.org/10.1021/acs.langmuir.2c00834 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiang, B., Solar, Q., Zhong, Q., Mu, P. & Li, J. Present analysis state of affairs and future prospect of superwetting sensible oil/water separation supplies. J. Mater. Chem. A 10, 20190–20217. https://doi.org/10.1039/D2TA04469B (2022).

    Article 
    CAS 

    Google Scholar
     

  • Aisien, F. A., Hymore, F. Ok. & Ebewele, R. O. Potential utility of recycled rubber in oil air pollution management. Environ. Monit. Assess. 85, 175–190. https://doi.org/10.1023/A:1023690029575 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, C. T., Su, P. Ok., Hu, C. C., Lai, J. Y. & Liu, Y. L. Floor modification of porous substrates for oil/water separation utilizing crosslinkable polybenzoxazine as an agent. J. Membr. Sci. 546, 100–109. https://doi.org/10.1016/j.memsci.2017.10.018 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Hariharan, A., Prabunathan, P., Subramanian, S. S., Kumaravel, M. & Alagar, M. Blends of Chalcone Benzoxazine and bio-benzoxazines coated cotton materials for oil-water separation and bio-silica strengthened nanocomposites for low-k purposes. J. Polym. Environ. 28, 598–613. https://doi.org/10.1007/s10924-019-01629-2 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yao, H., Lu, X., Xin, Z., Zhang, H. & Li, X. A sturdy bio-based polybenzoxazine/SiO2 modified material with superhydrophobicity and superoleophilicity for oil/water separation. Sep. Purif. Technol. https://doi.org/10.1016/j.seppur.2019.115792 (2019).

    Article 

    Google Scholar
     

  • Hu, W. et al. A mechanically strong and reversibly wettable benzoxazine/epoxy/mesoporous TiO2 coating for oil/water separation. Appl. Surf. Sci. https://doi.org/10.1016/j.apsusc.2019.145168 (2020).

    Article 

    Google Scholar
     

  • Li, Z. & Guo, Z. Versatile 3D porous superhydrophobic composites for oil-water separation and natural solvent detection. Mater. Des. 196, 109144 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Rabbani, Y., Shayesteh, H., Haghshenas, N. & Safarzadeh Khosrowshahi, M. Investigation of grafting Silane coupling brokers on superhydrophobicity of carbonyl iron/SiO2 particles for environment friendly oil/water combination and emulsion separation. Sci. Rep. 13, 1–12 (2023).

    Article 

    Google Scholar
     

  • Wang, C. F. & Lin, S. J. Sturdy Superhydrophobic/superoleophilic sponge for efficient steady absorption and expulsion of oil pollution from Water. ACS Appl. Mater. Interfaces 5, 8861–8864. https://doi.org/10.1021/am403266v (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, L. et al. Thiolated graphene-based superhydrophobic sponges for oil-water separation. Chem. Eng. J. 316, 736–743. https://doi.org/10.1016/j.cej.2017.02.030 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Pham, V. H. & Dickerson, J. H. Superhydrophobic silanized melamine sponges as excessive effectivity oil absorbent supplies. ACS Appl. Mater. Interfaces 6, 14181–14188. https://doi.org/10.1021/am503503m (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shayesteh, H., Norouzbeigi, R. & Rahbar-Kelishami, A. Hydrothermal facile fabrication of superhydrophobic magnetic nanospiky nickel wires: Optimization through statistical design. Surf. Interfaces 26, 101315. https://doi.org/10.1016/j.surfin.2021.101315 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Li, Z.-T., Wu, H.-T., Chen, W.-Y., He, F.-A. & Li, D.-H. Preparation of magnetic superhydrophobic melamine sponges for efficient oil-water separation. Sep. Purif. Technol. 212, 40–50 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Peng, Y. et al. Bio-based polybenzoxazine modified melamine sponges for selective absorption of natural solvent in water. Adv. Maintain. Syst. 3, 1–10. https://doi.org/10.1002/adsu.201800126 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Liu, T. et al. The preparation of superhydrophobic graphene/melamine composite sponge utilized in remedy of oil air pollution. J. Porous Mater. 22, 1573–1580. https://doi.org/10.1007/s10934-015-0040-8 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, Y. et al. Sturdy superhydrophobic melamine sponge primarily based on polybenzoxazine and Fe3O4 for oil/water separation. Sep. Purif. Technol. 275, 119130 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liu, L. et al. A facile technique to manufacture the superhydrophobic magnetic sponge for oil-water separation. Mater. Lett. 195, 66–70. https://doi.org/10.1016/j.matlet.2017.02.100 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Wang, J., Wang, H. & Geng, G. Extremely environment friendly oil-in-water emulsion and oil layer/water combination separation primarily based on durably superhydrophobic sponge ready through a facile route. Mar. Pollut. Bull. 127, 108–116. https://doi.org/10.1016/j.marpolbul.2017.11.060 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lei, Z., Zhang, G., Deng, Y. & Wang, C. Thermoresponsive melamine sponges with switchable wettability by interface-initiated atom switch radical polymerization for oil/water separation. ACS Appl. Mater. Interfaces. 9, 8967–8974. https://doi.org/10.1021/acsami.6b14565 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nazhipkyzy, M. et al. Efficient separation of petroleum oil-water mixtures through versatile and re-usable hydrophobic soot-coated melamine sponge. J. Water Course of Eng. 49, 103032 (2022).

    Article 

    Google Scholar
     

  • Zhang, R. et al. Sturdy, fluorine-free and superhydrophobic composite melamine sponge modified with twin silanized SiO2 microspheres for oil–water separation. Chin. J. Chem. Eng. 33, 50–60 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tan, J. & Zhang, Y.-F. Trisiloxane functionalized melamine sponges for oil water separation. Colloids Surf., A 634, 127972 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Arumugam, H., Ismail, A. A. M., Govindraj, L. & Muthukaruppan, A. Improvement of bio-based benzoxazines coated melamine foam for oil-water separation. Prog. Org. Coat. 153, 106128 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yang, X. et al. Traits and aqueous dye elimination skill of novel biosorbents derived from acidic and alkaline one-step ball milling of hickory wooden. Chemosphere 309, 136610 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, X. et al. Alkaline ball-milled peanut-hull biosorbent successfully removes aqueous natural dyes. Chemosphere 313, 137410 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, X. et al. Elimination of aqueous Eriochrome blue-black R by novel Na-Bentonite/Hickory biochar composites. Sep. Purif. Technol. 311, 123209 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Yang, X. et al. Floor useful teams of carbon-based adsorbents and their roles within the elimination of heavy metals from aqueous options: a vital evaluation. Chem. Eng. J. 366, 608–621 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, X. et al. Synthesis of hickory biochar through one-step acidic ball milling: Traits and titan yellow adsorption. J. Clear. Prod. 338, 130575 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yang, X. et al. Preparation of biosorbent for the elimination of natural dyes from aqueous answer through one-step alkaline ball milling of hickory wooden. Biores. Technol. 348, 126831 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Khosrowshahi, M. S. et al. The function of floor chemistry on CO2 adsorption in biomass-derived porous carbons by experimental outcomes and molecular dynamics simulations. Sci. Rep. 12, 1–19 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Mashhadimoslem, H., Safarzadeh, M., Ghaemi, A., Emrooz, H. B. M. & Barzegar, M. Biomass derived hierarchical porous carbon for high-performance O2/N2 adsorption; a brand new inexperienced self-activation method. RSC Adv. 11, 36125–36142 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh, G. et al. Extremely environment friendly technique for the synthesis of activated mesoporous biocarbons with extraordinarily excessive floor space for high-pressure CO2 adsorption. ACS Appl. Mater. Interfaces 9, 29782–29793 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salam, M. A., Makki, M. S. & Abdelaal, M. Y. Preparation and characterization of multi-walled carbon nanotubes/chitosan nanocomposite and its utility for the elimination of heavy metals from aqueous answer. J. Alloy. Compd. 509, 2582–2587 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Ramesh, S. et al. Ni (OH) 2-decorated nitrogen doped MWCNT nanosheets as an environment friendly electrode for prime efficiency supercapacitors. Sci. Rep. 9, 1–10 (2019).

    Article 

    Google Scholar
     

  • Chen, J.-J. et al. A hierarchical structure S/MWCNT nanomicrosphere with massive pores for lithium sulfur batteries. Phys. Chem. Chem. Phys. 14, 5376–5382 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pachfule, P., Biswal, B. P. & Banerjee, R. Management of porosity through the use of isoreticular zeolitic imidazolate frameworks (IRZIFs) as a template for porous carbon synthesis. Chem. A Eur. J. 18, 11399–11408 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Alemi, F. M., Dehghani, S. A. M., Rashidi, A., Hosseinpour, N. & Mohammadi, S. Synthesize of MWCNT-Fe2O3 nanocomposite for controlling formation and development of asphaltene particles in unstable crude oil. Colloids Surf., A 615, 126295 (2021).

    Article 

    Google Scholar
     

  • Huang, W., Zhang, H., Huang, Y., Wang, W. & Wei, S. Hierarchical porous carbon obtained from animal bone and analysis in electrical double-layer capacitors. Carbon 49, 838–843 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Bakhtiari, S. S. E., Karbasi, S., Tabrizi, S. A. H. & Ebrahimi-Kahrizsangi, R. Chitosan/MWCNTs composite as bone substitute: Bodily, mechanical, bioactivity, and biodegradation analysis. Polym. Compos. 40, E1622–E1632 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Badihehaghdam, M., Mousavi Khoie, S. M., Khast, F. & Safarzadeh Khosrowshahi, M. Mechanical properties and electrochemical conduct of electroless Ni–P-AlN nanocomposite coating. Metals Mater. Int. 28, 1372–1385 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Moopri Singer Pandiyarajan, S. et al. Designing an interlayer-widened MoS2-packed nitrogen-rich carbon nanotube core-shell construction for redox-mediated quasi-solid-state supercapacitors. ACS Appl. Power Mater. 4, 2218–2230 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Huang, R. et al. Defects and sulfur-doping design of porous carbon spheres for high-capacity potassium-ion storage. Journal of Supplies Chemistry A 10, 682–689 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, C. et al. Form-stabilized section change supplies primarily based on polyethylene glycol/porous carbon composite: The affect of the pore construction of the carbon supplies. Sol. Power Mater. Sol. Cells 105, 21–26 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Apriwandi, A., Taer, E., Farma, R., Setiadi, R. N. & Amiruddin, E. A facile method of micro-mesopores construction binder-free coin/monolith stable design activated carbon for electrode supercapacitor. J. Power Stor. 40, 102823 (2021).

    Article 

    Google Scholar
     

  • Zhang, X. & Yang, P. Ni diffusion in vertical development of MoS2 nanosheets on carbon nanotubes in direction of extremely environment friendly hydrogen evolution. Carbon 175, 176–186 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Altalhi, A. A., Mohammed, E. A., Morsy, S. S. M., Negm, N. A. & Farag, A. A. Catalyzed manufacturing of various grade biofuels utilizing steel ions modified activated carbon of cellulosic wastes. Gas 295, 120646 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Prakash, M. O., Raghavendra, G., Ojha, S. & Panchal, M. Characterization of porous activated carbon ready from arhar stalks by single step chemical activation technique. Mater. At the moment: Proceed. 39, 1476–1481 (2021).


    Google Scholar
     

  • Mobin Safarzadeh Khosrowshahi, H. M., Hosein Banna Motejadded Emrooz, Ahad Ghaemi, Mahsa Sadat Hosseini. (2022) Inexperienced self-activating synthesis system for porous carbons: Celery biomass wastes as a typical case for CO2 uptake with kinetic, equilibrium and thermodynamic research. Diamond and Associated Supplies 127, 109204, doi:https://doi.org/10.1016/j.diamond.2022.109204

  • Avid, A. et al. Floor modification of MWCNT and its affect on properties of paraffin/MWCNT nanocomposites as section change materials. J. Appl. Polym. Sci. 137, 48428 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Vafaeinia, M., Khosrowshahi, M. S., Mashhadimoslem, H., Emrooz, H. B. M. & Ghaemi, A. Oxygen and nitrogen enriched pectin-derived micro-meso porous carbon for CO 2 uptake. RSC Adv. 12, 546–560 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ma, H. et al. Elimination of chromium (VI) from water by porous carbon derived from corn straw: Influencing components, regeneration and mechanism. J. Hazard. Mater. 369, 550–560 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peng, G., Xing, L., Barrio, J., Volokh, M. & Shalom, M. A common synthesis of porous carbon nitride movies with tunable floor space and photophysical properties. Angew. Chem. Int. Ed. 57, 1186–1192 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Bazargan, A. & McKay, G. A evaluation–synthesis of carbon nanotubes from plastic wastes. Chem. Eng. J. 195, 377–391 (2012).

    Article 

    Google Scholar
     

  • Ma, Y. et al. Preparation of cauliflower formed hp-Co/GNs composite microwave absorbing supplies. Mater. Charact. 189, 111907 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Gupta, S. P. et al. Enhanced power density and stability of self-assembled cauliflower of Pd doped monoclinic WO3 nanostructure supercapacitor. Mater. Chem. Phys. 225, 192–199 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Z., Yang, T., Dong, Y. & Wang, X. A room temperature VOCs fuel sensor primarily based on a layer by layer multi-walled carbon nanotubes/poly-ethylene glycol composite. Sensors 18, 3113 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mwafy, E. A. Eco-friendly method for the synthesis of MWCNTs from waste tires through chemical vapor deposition. Environ. Nanotechnol., Monit. Manag. 14, 100342 (2020).


    Google Scholar
     

  • Mohd Saidi, N. et al. Characterizations of MWCNTs nanofluids on the impact of floor oxidative remedies. Nanomaterials 12, 1071 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Habibi, N. & Pourjavadi, A. Magnetic, thermally secure, and superhydrophobic polyurethane sponge: A excessive environment friendly adsorbent for separation of the marine oil spill air pollution. Chemosphere 287, 132254 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar, H. et al. Lignin-based superhydrophobic melamine resin sponges and their utility in oil/water separation. Ind. Crops Prod. 170, 113798 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Mao, Y., Xia, W., Peng, Y. & Xie, G. Relationship mannequin between pore wetting and floatability of energetic carbon: Potential steering on porous mineral flotation. Miner. Eng. 157, 106556 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ma, P.-C., Mo, S.-Y., Tang, B.-Z. & Kim, J.-Ok. Dispersion, interfacial interplay and re-agglomeration of functionalized carbon nanotubes in epoxy composites. Carbon 48, 1824–1834 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Mu, L., Yue, X., Hao, B., Wang, R. & Ma, P.-C. Facile preparation of melamine foam with superhydrophobic efficiency and its system integration with prototype tools for the clean-up of oil spills on water floor. Sci. Whole Environ. 833, 155184. https://doi.org/10.1016/j.scitotenv.2022.155184 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, X., Han, Z., Liu, Y. & Wang, Q. Micro-nano floor construction development and hydrophobic modification to organize environment friendly oil-water separation melamine formaldehyde foam. Appl. Surf. Sci. 505, 144577. https://doi.org/10.1016/j.apsusc.2019.144577 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lei, Z. et al. Ultralight, robustly compressible and super-hydrophobic biomass-decorated carbonaceous melamine sponge for oil/water separation with excessive oil retention. Appl. Surf. Sci. 489, 922–929. https://doi.org/10.1016/j.apsusc.2019.06.025 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, Y., Zhang, Z., Wang, M., Males, X. & Xue, Q. One-pot fabrication of nanoporous polymer embellished supplies: From oil-collecting gadgets to high-efficiency emulsion separation. J. Mater. Chem. A 5, 5077–5087. https://doi.org/10.1039/c7ta00297a (2017).

    Article 
    CAS 

    Google Scholar
     

  • Ejeta, D. D. et al. Preparation of a main-chain-type polybenzoxazine-modified melamine sponge through non-solvent-induced section inversion for oil absorption and very-high-flux separation of water-in-oil emulsions. Sep. Purif. Technol. 263, 118387. https://doi.org/10.1016/j.seppur.2021.118387 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Tune, Q. et al. Interfacial meeting of micro/nanoscale nanotube/silica achieves superhydrophobic melamine sponge for water/oil separation. Sep. Purif. Technol. 280, 119920. https://doi.org/10.1016/j.seppur.2021.119920 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Xue, J. et al. Tetradecylamine-MXene functionalized melamine sponge for efficient oil/water separation and selective oil adsorption. Sep. Purif. Technol. 259, 118106. https://doi.org/10.1016/j.seppur.2020.118106 (2021).

    Article 
    CAS 

    Google Scholar
     

  • 3D-printed revolving units can sense how they’re shifting — ScienceDaily

    Integrating sensors into rotational mechanisms might make it doable for engineers to construct...

    Sturdy superhydrophobic/superoleophilic melamine foam primarily based on biomass-derived porous carbon and multi-walled carbon nanotube for oil/water separation

    Shayesteh, H., Rahbar-Kelishami, A. & Norouzbeigi, R. Superhydrophobic/superoleophilic micro/nanostructure nickel particles for oil/water...

    Ministry of Tribal Affairs Recruitment 2023 Out – Wage is Rs. 208700/-  per Month!!!!

    Ministry of Tribal Affairs Recruitment 2023: Ministry of Tribal Affairs intends to fill...

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here